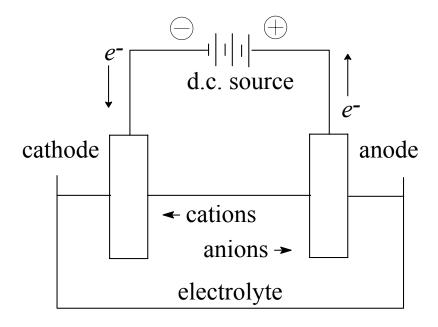

Electrical Conduction

- **Electrical conduction** is the flow of electric charge produced by the movement of electrons in a conductor.
- The rate of electron flow (called the *current*, *I*, in amperes) is the amount of charge (in coulombs, C) carried per unit time:

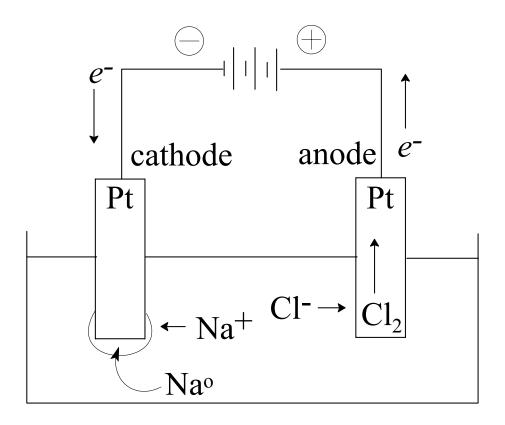
$$I = Q/t$$

$$Q = It$$


 $1 \text{ C} = 1 \text{ amp·s} = 6.24 \text{ x } 10^{18} \text{ unit charges}$

Faraday $(\mathscr{F}) = 96$, $489 \pm 2 \text{ C} \approx 9.65 \text{ x } 10^4 \text{ A·s}$ = charge of one mole electrons

Electrolytic Conduction


- Electrolytic conduction is the passage of electrical current through an electrolyte (molten salt or electrolyte solution).
 - Charge is carried by the movement of ions.
 - Electrolytic conduction results in *non-spontaneous* chemical change, called *electrolysis*.
- ✓ No ions can move freely in solid ionic salts, so there can be no electrolytic conduction.
 - ⇒ Ionic *solids* are non-conductors.
- Electrolysis reactions are most often *non-spontaneous* redox reactions, forced to occur by the imposed electrical potential.

Electrolysis Cell

- Battery or other direct current (d.c.) source forces passage of electrical current through electrolyte.
- Cathode is electron source for species that are reduced in the electrolysis reaction.
- Anode is electron sink for species that will be oxidized in the electrolysis reaction.
- Cathode is negative (\oplus) ; anode is positive (\oplus) .
- In the external circuit, electrons flow from the anode, through the d.c. current source, to the cathode.

Electrolysis of Molten NaCl(1) With Inert Pt Electrodes

Electrolysis in Aqueous Solution

- In an aqueous solution of an electrolyte, there may be several possible oxidations and several possible reductions.
 - Among possible oxidations and reductions, the overall redox reaction requiring the least applied voltage will occur.

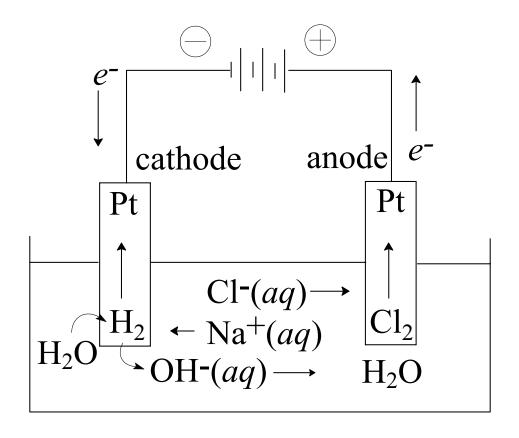
Electrolysis of NaCl(aq) Solution With Inert Pt Electrodes

Possible Reductions at the Cathode:

$$Na^{+}(aq) + e^{-} \rightarrow Na(s)$$
 $E^{0} = -2.71 \text{ V}$

$$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$
 $E^0 = -0.83 \text{ V}$

Reduction of $H_2O(l)$ requires overcoming much less potential, so formation of $H_2(g)$ and $OH^-(aq)$ occurs.


Possible Oxidations at the Anode:

$$2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$$
 $-E^{\circ} = -1.36 \text{ V}$

$$2H_2O(l) \rightarrow 4H^+(aq) + O_2(g) + 4e^- \qquad -E^0 = -1.23 \text{ V}$$

- Applied voltage requirements are similar, but formation of $O_2(g)$ at Pt has a high overvoltage, so $Cl_2(g)$ forms at high concentrations of $Cl^-(aq)$.
- Overvoltage is extra voltage that must be supplied to overcome a kinetic inhibition to forming a certain species at a particular kind of electrode.

Electrolysis of NaCl(aq) Solution With Inert Pt Electrodes

$$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$
 $E^0 = -0.83 \text{ V}$
 $2Cl^-(aq) \rightarrow Cl_2(g) + 2e^ -E^0 = -1.36 \text{ V}$
 $2H_2O(l) + 2Cl^-(aq) \rightarrow H_2(g) + 2OH^-(aq) + Cl_2(g)$
 $E^0_{cell} = -2.19 \text{ V}$

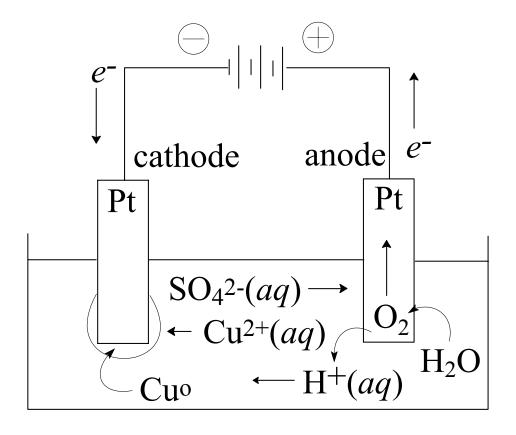
Electrolysis of CuSO₄(aq) Solution With Inert Pt Electrodes

Possible Reductions at the Cathode:

$$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$
 $E^0 = -0.83 \text{ V}$

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $E^{0} = +0.34 \text{ V}$

 $\operatorname{Cu}^{2+}(aq)$ is reduced to $\operatorname{Cu}(s)$.


Possible Oxidations at the Anode:

$$2SO_4^{2-}(aq) \rightarrow S_2O_8^{2-}(aq) + 2e^- \qquad -E^0 = -2.01 \text{ V}$$

$$2H_2O(l) \rightarrow 4H^+(aq) + O_2(q) + 4e^- \qquad -E^0 = -1.23 \text{ V}$$

 $H_2O(l)$ is oxidized to $O_2(g)$ and $H^+(aq)$, despite the overvoltage.

Electrolysis of CuSO₄(aq) Solution With Inert Pt Electrodes

$$2\{Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)\} \qquad E^{\circ} = +0.34 \text{ V}$$

$$\frac{2H_2O(l) \rightarrow 4H^{+}(aq) + O_2(g) + 4e^{-} - E^{\circ} = -1.23 \text{ V}}{2Cu^{2+}(aq) + 2H_2O(l) \rightarrow 2Cu(s) + 4H^{+}(aq) + O_2(g)}$$

$$E^{\circ}_{cell} = -0.89 \text{ V}$$

Electrolysis of CuSO₄(aq) Solution With Active Cu Electrodes

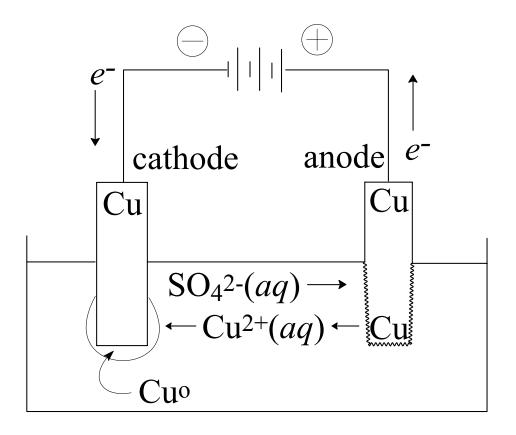
Possible Reductions at the Cathode:

$$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$
 $E^0 = -0.83 \text{ V}$

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $E^{0} = +0.34 \text{ V}$

 $\operatorname{Cu}^{2+}(aq)$ is reduced to $\operatorname{Cu}(s)$.

Possible Oxidations at the Anode:


$$2SO_4^{2-}(aq) \rightarrow S_2O_8^{2-}(aq) + 2e^- \qquad -E^0 = -2.01 \text{ V}$$

$$2H_2O(l) \rightarrow 4H^+(aq) + O_2(q) + 4e^- \qquad -E^0 = -1.23 \text{ V}$$

$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$
 $-E^{0} = -0.34 \text{ V}$

Now Cu(s) oxidation is the favored process at the anode, so Cu(s) is oxidized to $Cu^{2+}(aq)$.

Electrolysis of CuSO₄(aq) Solution With Active Cu Electrodes

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 [cathode] $E^{0} = +0.34 \text{ V}$
 $Cu(s)$ [anode] $\rightarrow Cu^{2+}(aq) + 2e^{-}$ $-E^{0} = -0.34 \text{ V}$
 $Cu^{2+}(aq) + Cu(s)$ [anode] $\rightarrow Cu(s)$ [cathode] $+ Cu^{2+}(aq)$
 $E^{0}_{cell} = 0.00 \text{ V}$

Faraday's Law

The amount of substance produced or consumed at an electrode is proportional to the number of electrons transferred from the anode to the cathode.

$$Q = It$$

Faraday $(\mathscr{F}) = 96$, $489 \pm 2 \text{ C} \approx 9.65 \text{ x } 10^4 \text{ A·s}$ = charge of one mole electrons

The *equivalent weight* of a substance is that amount produced or consumed at an electrode when the charge equivalent to one mole of electrons $(1 \mathcal{F})$ is passed.